Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тверской государственный университет»

Факультет прикладной математики и кибернетики Направление «Фундаментальная информатика и информационные технологии»

Кафедра математической статистики и системного анализа

Курсовая работа

по дисциплине «Теория вероятностей и математическая статистика»

Направление: 02.03.02 – «Фундаментальная информатика и информационные технологии»

Вариант №19

Выполнила: Студентка 26 группы Демьянова Виктория Вадимовна Научный руководитель: к.ф.-м.н. Захарова Ирина Владимировна

Оглавление

Описание метода статистического моделирования	
(метод Монте Карло)	стр.2
Постановка задачи	стр.2
Замечания	стр.3
Код программы	стр.4
Результаты работы	стр.5

Описание метода статистического моделирования (метод Монте Карло)

Метод Монте-Карло— общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи

Интегрирование методом Монте-Карло. Геометрический алгоритм Монте-Карло.

Предположим, необходимо взять интеграл от некоторой функции.

Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции.

Для определентия этой площади можно воспользоваться одним из обычных численных методов интегрирования: разбить отрезок на под отрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

- 1. Ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого S{par} можно легко вычислить; любая сторона прямоугольника содержит хотя бы 1 точку графика функции, но не пересекает его;
- 2. «Набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек (N штук), координаты которых будем выбирать случайным образом;
- 3. Определим число точек (К штук), которые попадут под график функции;
- 4. Площадь области, ограниченной функцией и осями координат, S даётся $S = S_{par} \frac{K}{N}$ выражением

Постановка задачи

Написать программу, рассчитывающую площадь фигуры.

На входе: число наблюдений — n + дополнительные параметры.

На выходе: площадь фигуры и относительная погрешность.

Вариант 19 Фигурой является круг радиуса *R*.

Входной параметр также: R > 0.

Замечания

Замечание 1: Если случайная величина ξ имеет равномерное распределение на отрезке[0,1], то случайная величина $\eta = a + (b-a) \xi$ имеет равномерное распределение на отрезке [a,b].

Замечание 11: Пусть необходимо найти площадь некоторой области D Для этого:

- 1. Строим прямоугольник, со сторонами [a,b] и [c,d], содержащий область D
- 2. Рассмотрим случайные величины ξ и η , где случайная величина ξ имеет равномерное распределение на отрезке [a,b]; случайная величина η имеет равномерное распределение на отрезке [c,d]. Введём случайную величину

$$\varphi = \begin{cases} 1, \text{если } (\xi, \eta) \in D \\ 0, \text{иначе} \end{cases}$$

Вычислим математическое ожидание случайной величины ϕ

$$M\varphi = 1 \cdot P((\xi, \eta) \in D) + 0 \cdot P((\xi, \eta) \notin D) = P((\xi, \eta) \in D) = \frac{S_D}{S_{abcd}},$$

где S_D , $S_{abcd}-$ площади области D и прямоугольника abcd, соответственно. При вычислении вероятности мы воспользовались геометрическим определением вероятности, поскольку случайный вектор имеет равномерное распределение в области D. Следовательно, $S_D = S_{abcd} * M_{\varphi}$

Пусть $(x_1,y_1),\ldots,(x_n,y_n)$ — полученные («наблюдённые») значения случайного вектора (ξ,η) . Таким образом мы имеем \mathbf{n} измерений случайной величины $\mathbf{\phi}$: $\mathbf{z}_1...\mathbf{z}_n$, где

$$z_i =$$

$$\begin{cases} 1, \text{если } (x_i, y_i) \in D \\ 0, \text{иначе} \end{cases}$$

i=1,...,n. Отсюда получаем

$$S_{D} \approx S_{abcd} * \frac{\sum_{i=1}^{n} z_{i}}{n}$$

Код программы

```
#include <iostream>
#include <math.h>
#include <locale.h>
using namespace std;
int R;
double a;
double b;
double c;
double d;
//Функция, которая проверяет принадлежит ли точка (x,y) области D
bool in round(double x, double y)
{
      if (x*x + y*y \le R * R)
      {
             return true;
      return false;
//функции, которые генерируют случайную величину с равномерным распределением на
[0,1] и переводят её в случайную величину на отрезке [a,b]
double randomx() { return (double(rand()) / double(RAND_MAX))*(b - a) + a; }
double randomy() { return (double(rand()) / double(RAND_MAX))*(d - c) + c; }
//Подсчёт площади D
double square(int n)
{
      double answer = 0.0;
      for (int i = 0; i < n; i++)
      {
             if (in round(randomx(), randomy()))answer += 1.0;
      }
      return answer*4*R*R / double(n);
//Площадь abcd = 4 * R * R
}
int main()
      cin >> R;
      double const pi = 3.1415926535;
      a = -R;
      b = R;
      c = -R;
      d = R;
      setlocale(0, "");
      int n;
      cin >> n;
      double res = square(n);
      cout<< "При числе наблюдений n=" << n << " Площадь фигуры= " << res << "
Погрешность= " << abs(pi*R*R - res) << endl;
      return 0;
}
```

Результаты работы программы

При радиусе R=1 и числе наблюдений n=7. Площадь фигуры = 3,42857 Погрешность = 0,286979

При радиусе R=1 и числе наблюдений n=20. Площадь фигуры =3,2 Погрешность =0,0584073

При радиусе R=1 и числе наблюдений n=50. Площадь фигуры = 3,36 Погрешность = 0,218407

При радиусе R=4 и числе наблюдений n=100. Площадь фигуры = 52,48 Погрешность = 2,21452

При радиусе R=4 и числе наблюдений n=1000. Площадь фигуры =51,328 Погрешность =1,06252